SELF-SIMILAR SOLUTIONS OF THE PROBLEM OF DISPLACEMENT OF ONE GAS BY ANOTHER IN AN AXISYMMETRIC CASE WITH A QUADRATIC DRAG LAW

Yu. N. Gordeev,¹ A. E. Sandakov,¹ and Yu. L. Chizhov²

UDC 532.546

A problem of piston-induced displacement of one gas by another in cracks (porous media) in an axisymmetric case with a quadratic drag law is studied. Self-similar solutions for determining the dynamic characteristics (velocity and pressure) of the displacing and displaced gases are constructed in quadratures. The velocity and pressure are studied as functions of a self-similar variable for several initial conditions and parameters.

Key words: self-similarity, displacement, gas, drag, crack, porous medium.

An exact solution of the problem of a gas flow in a porous medium in a two-dimensional case was obtained in [1, 2]. The problem of displacement of one liquid by another in such a case was considered in [3, 4].

At present, the study of the gas flow is an urgent problem in the theory of hydrofracturing (see, e.g., [5, 6]). In the present paper, we consider the problem of isothermal displacement of one gas by another in wellpermeable cracks in an axisymmetric flow with a quadratic drag law. Self-similar solutions for determining the velocity and pressure of the displacing and displaced gases are constructed in quadratures. Self-similar velocity and pressure are plotted as functions of a self-similar variable for several initial conditions and parameters.

1. Formulation of the Problem of Displacement of One Gas by Another with a Quadratic Drag Law. For high flow velocities, the equations of isothermal motion of the gas in a channel (or in a porous medium) have the form [7–12]

$$\frac{\partial \rho}{\partial t} + \frac{1}{x^m} \frac{\partial}{\partial x} (x^m u \rho) = 0,$$
$$\frac{\partial p}{\partial x} = -\frac{b}{w^2} u^2 \rho \qquad (p = c^2 \rho)$$

where ρ is the density, u is the velocity, p is the gas pressure, x is the coordinate, t is the time, m is the index of symmetry of the problem, c is the isothermal velocity of sound in the gas, w is the crack angle, and b is an experimental constant determined by the crack roughness and by the Reynolds number.

In the case of an axisymmetric flow (m = 1), under the assumption that only one species is present at each particular point, the equations of gas displacement have the form [12]

$$\frac{\partial}{\partial t}\rho_i + \frac{1}{x}\frac{\partial}{\partial x}\left(xu_i\rho_i\right) = 0, \qquad \frac{\partial}{\partial x}p_i = -\frac{b}{w^2}u_i^2\rho_i, \qquad p_i = c_i^2\rho_i.$$
(1.1)

Here subscript i = 1 refers to the displacing gas $[0 \le x \le L(t)]$ and i = 2 refers to the displaced gas $[L(t) \le x < +\infty]$, where L(t) is the interface between the gases].

The interface position L(t) under given boundary and initial conditions is determined by solving system (1.1).

¹Moscow Engineering Physics Institute (State University), Moscow 115409. ²Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow 119526; sandakovanton@mail.ru. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 87–92, September–October, 2008. Original article submitted May 22, 2007; revision submitted September 13, 2007.

Assuming that the displacement is induced by a piston, we define the initial and boundary conditions of the problem as

$$p(0,t) = p^*, \qquad p(x,0) = p_0.$$
 (1.2)

For the interface between the gases x = L(t), the Hugoniot conditions (continuity of the mass and momentum fluxes) yield

$$p_1(L(t), t) = p_2(L(t), t), \qquad p_1(u_1 - D)\Big|_{x = L(t)} = p_2(u_2 - D)\Big|_{x = L(t)}$$

$$(1.3)$$

(D = dL/dt is the interface velocity).

The mass flux of the gas through the interface of two immiscible gases equals zero; hence, conditions (1.3) acquire the form $u_1(L(t), t) = u_2(L(t), t) = D$.

Eliminating the density ρ_i from Eqs. (1.1), we obtain

$$\frac{\partial p}{\partial t} + \frac{1}{x} \frac{\partial}{\partial x} (xup) = 0, \qquad \frac{\partial p}{\partial x} = -\frac{u^2 p}{l}, \tag{1.4}$$

where $l = l_1 = w^2/(bc_1^2)$, $p = p_1$, and $u = u_1$ for $0 \le x \le L(t)$ and $l = l_2 = w^2/(bc_2^2)$, $p = p_2$, and $u = u_2$ for $L(t) \le x < +\infty$. The initial and boundary conditions (1.2) and (1.3) are written in the form

$$p(x,0) = p_0, \qquad p(0,t) = p^*,$$
(1.5)

$$p(L(t) - 0, t) = p(L(t) + 0, t),$$
 $u(L(t) - 0, t) = u(L(t) + 0, t) = D.$

Problem (1.4), (1.5) is a self-similar problem with the variable

$$\theta = x(4/(9t^2l_1))^{1/3} = (4/(9l_1))^{1/3}xt^{-2/3}.$$

The pressure p and velocity u of the gas flow in the channel are expressed via their dimensionless analogs $f(\theta)$ and $\varphi(\theta)$:

$$p = p^* f(\theta), \qquad u = (2l_1/(3t))^{1/3} \varphi(\theta).$$

The self-similar variable θ_0 corresponding to the interface coordinate is $\theta_0 = L(t)[4/(9t^2l_1)]^{1/3}$.

In the self-similar variables, problem (1.4) becomes

$$\varphi' - \varkappa \varphi^3 + \theta \varkappa \varphi^2 + \varphi/\theta = 0, \qquad f' + \varkappa \varphi^2 f = 0, \tag{1.6}$$

where

$$\varkappa = \begin{cases} 1, & 0 \leqslant \theta \leqslant \theta_0, \\ \varkappa_0 = c_1^2/c_2^2, & \theta_0 < \theta < +\infty; \end{cases}$$

and the prime denoted the derivative with respect to the variable θ .

Taking into account that $\lim_{x\to\infty} (xu\rho) = A$, where A = const, in this formulation, we can write the initial and boundary conditions (1.2) in the self-similar variables as

$$\lim_{\theta \to 0} (f\theta\varphi) = 1, \qquad \lim_{\theta \to \infty} f = N = p_0/p^*, \tag{1.7}$$

and the conditions on the interface between the gases as

$$f(\theta_0 - 0) = f(\theta_0 + 0), \qquad \varphi(\theta_0 - 0) = \varphi(\theta_0 + 0) = \theta_0.$$
 (1.8)

2. Self-Similar Solutions of the Displacement Problem. Renormalizing the first equation in (1.6) as

$$\varphi = (2/3)^{-1/3} \varkappa^{-1/3} \eta, \qquad \theta = (2/3)^{2/3} \varkappa^{-1/3} \xi,$$
(2.1)

we can reduce it to an equation of the form

$$\frac{d\eta}{d\xi} - \eta^3 + \frac{2}{3}\xi\eta^2 + \frac{\eta}{\xi} = 0.$$
(2.2)

Using the substitutions $1/\eta = (2/3)\chi\xi^2$ and $\chi = 1 - 3^{2/3}\psi/\xi$, we obtain an equation with respect to the function $\xi(\psi)$: 777

$$\frac{d\xi}{d\psi} = 4 \cdot 3^{-4/3} \xi^2 (\xi - 3^{2/3} \psi).$$
(2.3)

It follows from Eq. (2.3) that $\xi(\psi)$ is a strictly monotonic function; hence, there exists an inverse function $\psi(\xi)$.

Passing to a new variable z by the formula $\xi = 3^{2/3} \cdot 2^{-1} (\psi^2 - z)^{-1}$ and using the expression $\eta = (3/2)\xi^{-2}(1 - 3^{2/3}\psi/\xi)^{-1}$, we obtain the equation $d\psi/dz = \psi^2 - z$. With the substitution $\psi = -y'/y$, the latter equation is reduced to Airy's equation

$$y'' = zy. (2.4)$$

Airy's equation (2.4) has a general solution of the form $y = D_1 A_i(z) + D_2 B_i(z)$, where $A_i(z)$ and $B_i(z)$ are Airy's functions [13, 14]; D_1 and D_2 are constants.

In our case, Airy's equation (2.4) has the following solutions:

$$y(z) = \begin{cases} D_1 A_i(z) + D_2 B_i(z), & 0 \leq \theta < \theta_0, \\ D_3 A_i(z) + D_4 B_i(z), & \theta_0 < \theta. \end{cases}$$

The first solution describes the displacing gas with a parameter $\varkappa = 1$, and the second solution describes the displaced gas with a parameter $\varkappa = \varkappa_0 = c_1^2/c_2^2$. The constants D_i (i = 1, ..., 4) are determined from the boundary conditions of the problem.

From the second equation in (1.6) and Eq. (2.1), we obtain

$$\frac{df}{d\xi} + \eta^2 f = 0. \tag{2.5}$$

Integrating Eq. (2.5) and using the chain of equalities obtained in [12], we can write $f = (2/3)y^2 + (4/3)y'^3y^{-1} - (4/3)y'yz$. Thus, the gas pressure f is expressed via the function y(z).

The variables ξ and z are related by the function $\psi(z)$:

$$y^{\prime 2}y^{-2} = 3^{2/3} \cdot 2^{-1}\xi^{-1} + z.$$
(2.6)

Let us consider the asymptotic solutions of Eq. (2.2). As $\xi \to \infty$, the gas velocity is $\eta(\xi) \to 0$. In this case, the asymptotic solution of Eq. (2.2) has the form $\eta \approx (3/2)\xi^{-2} + E\xi^{-3} + \dots$, where E is a constant. It follows from the definition of the function ψ that ψ tends to a constant value as $\xi \to \infty$, and $\psi^2(z_1) = z_1$.

For $\xi \to 0$, the asymptotic solutions of Eq. (2.2) can be presented in the form $\eta \approx 1/\sqrt{2\xi}$ and $\psi \approx -3^{-1/3}(2\xi)^{-1/2}$, i.e., $\psi \to -\infty$ as $\xi \to 0$.

As $\psi = -y'y^{-1}$, the point $\xi = 0$ corresponds to the point $z = z_0$ [$z_0 < z_1$ is the point with $y(z_0) = 0$ closest to z_1].

As ξ changes from zero to ∞ , the variable z changes from z_0 to z_1 with the only discontinuity at the interface between the gases.

For $\xi \to 0$ or $z = z_0$, we have

$$\lim_{\theta \to 0} (f\theta\varphi) = 1, \qquad y(z_0) = 0$$

Using the identity $A'_i(z_0)B_i(z_0) - A_i(z_0)B'_i(z_0) = 1/\pi$ [14], we obtain

$$D_1 = 3^{1/2} \cdot 2^{-2/3} \pi B_i(z_0), \qquad D_2 = -3^{1/2} \cdot 2^{-2/3} \pi A_i(z_0).$$

For $\xi \to \infty$ or $z = z_1$, we have

$$\lim_{\xi \to \infty} f = N, \qquad \psi^2(z_1) = z_1,$$

$$D_3 = -\sqrt{1.5N} \pi (B'_i(z_1) - \sqrt{|z_1|} B_i(z_1)), \qquad D_4 = \sqrt{1.5N} \pi (A'_i(z_1) - \sqrt{|z_1|} A_i(z_1)).$$

Using Eqs. (2.1) and (2.6) and the definition of the function η , we can write the dependence $z(\theta)$:

$$z = \left(\frac{\varkappa}{4}\right)^{2/3} \left(\theta - \frac{1}{\varkappa\varphi\theta}\right)^2 - \frac{1}{\theta} (2\varkappa)^{-1/3}, \qquad \varkappa = \begin{cases} 1, & 0 \le \theta \le \theta_0, \\ \varkappa_0, & \theta_0 < \theta < +\infty \end{cases}$$

At the point θ_0 , the gas velocity $\varphi(\theta)$ is continuous, and the parameter \varkappa changes in a jumplike manner from $\varkappa = 1$ to $\varkappa = \varkappa_0$; hence, the function $z(\theta)$ also changes at the point θ_0 in a jumplike manner from $z(\theta_0 - 0) = z^-$ to $z(\theta_0 + 0) = z^+$, where

778

Fig. 1. Gas pressure f versus the self-similar variable θ : 1) $\varkappa_0 = 0.5$ and N = 3.1; 2) $\varkappa_0 = 1$ and N = 2.85; 3) $\varkappa_0 = 4$ and N = 3.5.

Fig. 2. Gas velocity φ versus the self-similar variable θ : the dashed curve shows the data for $\varphi = \theta$; the remaining notation is the same as in Fig. 1.

$$z^{-} = 2^{-1/3} (\theta_0^2 / (2(1 - \theta_0^{-3})^2) - \theta_0^{-1}), \qquad z^{+} = (\varkappa_0 / 4)^{2/3} (\theta_0 - (\varkappa_0 \theta_0^2)^{-1})^2 - \theta_0^{-1} (2\varkappa_0)^{-1/3}.$$

In the intervals $\theta \in [0, \theta_0)$ and $\theta \in (\theta_0, +\infty)$, the function $z(\theta)$ behaves monotonically.

Taking into account conditions (1.8) and (2.1) and using the definition of the function η , we obtain

$$y(z^{-}) = \varkappa_0^{-1/2} y(z^{+}), \qquad \frac{y'(z^{+})}{y'(z^{-})} = \varkappa_0^{-1/6} \left(\frac{1 - \theta_0^3 \varkappa_0}{1 - \theta_0^3}\right).$$
(2.7)

Thus, for all fixed N and \varkappa_0 from (1.8) and the condition $\theta(z^-) = \theta(z^+)$, the values of z_0 and z_1 can be determined.

Let us consider the algorithm of constructing a solution of problem (1.6)-(1.8). Note that N and \varkappa_0 are fixed parameters of the problem, and z_0 is an auxiliary parameter to be selected. First, a certain value of z_0 is chosen, after which the constants D_1 and D_2 and the function y(z) for the displacing gas are found. Thus, the functions $\varphi(z)$ and $\theta(z)$ for the displacing gas are determined on the interval $z \in [z_0, z^-]$. Based on z_0 , the value of z^- is found, and then z^+ is determined with the use of z^- , given \varkappa_0 , and conditions (1.8). The constants D_3 and D_4 are calculated on the basis of conditions (2.7) on the interface. Thus, the function y(z) and the functions f(z), $\varphi(z)$, and $\theta(z)$ for the displaced gas on the interval $z \in [z^+, z_1]$ are determined. Then the value of z_1 is found, and a certain value of \tilde{N} corresponding to the chosen z_0 is determined. The value of the parameter z_0 corresponding to the given value of the parameter N can be determined by matching with appropriate accuracy.

Dependences of the dynamic characteristics of the gases $f(\theta)$ and $\varphi(\theta)$ as functions of the self-similar variable θ for different initial conditions are constructed.

Figures 1 and 2 show the gas pressure f and gas velocity φ as functions of θ .

It follows from Fig. 1 that a jump in the derivative of pressure $f(\theta)$ corresponds to the interface between the gases $\theta = \theta_0$. If the density of the displaced gas is greater than the density of the displacing gas ($\varkappa_0 > 1$), then the jump of the derivative is negative $(df/d\theta|_{\theta=\theta_0+0} - df/d\theta|_{\theta=\theta_0-0} < 0)$; in the case of the smaller density of the displaced gas ($\varkappa_0 < 1$), the jump of the derivative is positive.

The results of the present work can be used to study the gas flow in an axisymmetric crack at high velocities of motion [11] and to test various numerical algorithms.

REFERENCES

- A. G. Bondarenko, V. M. Kolabashkin, and N. A. Kudryashov, "Self-similar solution of the problem of a gas flow through a porous medium in the regime of turbulent filtration," *Prikl. Mat. Mekh.*, 44, No. 3, 573–577 (1980).
- Yu. N. Gordeev, N. A. Kudryashov, and V. V. Murzenko, "Self-similar solutions of one-dimensional problems of gas motion in a porous medium with a two-term drag law," *Inzh.-Fiz. Zh.*, 47, No. 3, 36–42 (1984).
- L. M. Gadzhiev, I. R. Muradov, and S. U. Agaeva, "Self-similar solutions of displacement of one liquid by another in a seam with a nonlinear (quadratic) law of filtration," *Izv. Vyssh. Uchebn. Zaved.*, Neft' Gaz, No. 4, 34–38 (1983).
- Yu. N. Gordeev, N. A. Kudryashov, and V. V. Murzenko, "Isothermal displacement of one gas by another," *Izv. Vyssh. Uchebn. Zaved.*, Neft' Gaz, No. 3, 103–107 (1987).
- 5. M. J. Economides and K. G. Nolte (eds.), Reservoir Stimulation, Shlumberger Educ. Services, Houston (1997).
- D. Garagash and E. Detournay, "An analysis of the influence of the pressurization rate on the borehole breakdown pressure," J. Solids Struct., 34, No. 24, 3099–3118 (1997).
- L. S. Leibenzon, Motion of Natural Liquids and Gases in a Porous Medium [in Russian], Gostekhteorizdat, Moscow (1947).
- 8. P. Ya. Polubarinova-Kochina, Theory of Motion of Ground Waters [in Russian], Nauka, Moscow (1977).
- G. I. Barenblatt, "Self-similar motions of a compressible liquid in a porous medium," *Prikl. Mat. Mekh.*, 16, No. 6, 679–698 (1952).
- F. A. Morrison (Jr.), "Transient non-Darcy gas flow in a finite porous bed," Trans. ASME, Ser. I: J. Fluids Eng., 99, No. 4, 224–230 (1977).
- J. H. Pifts and H. Brandt, "Gas flow in a permeable earth formation containing a crack," Trans. ASME, Ser. E: J. Appl. Mech., 44, No. 4, 553–558 (1977).
- N. A. Kudryashov and V. V. Murzenko, "Self-similar solution of the problem of axisymmetric motion of a gas through a porous medium with a quadratic drag law," *Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza*, No. 4, 168–171 (1982).
- 13. E. Von Kamke, Differentialgleichungen Lösungsmethoden und Lösungen, Leipzig (1959).
- 14. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, John Wiley and Sons, New York (1972).